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Abstract

INTRODUCTION—The PGSA (Placebo Group Simulation Approach) aims at avoiding problems 

of sample representativeness and ethical issues typical of placebo-controlled secondary prevention 

trials with MCI patients. The PGSA uses mathematical modeling to forecast the distribution of 

quantified outcomes of MCI patient groups based on their own baseline data established at the 

outset of clinical trials. These forecasted distributions are then compared with the distribution of 

actual outcomes observed on candidate treatments, thus substituting for a concomitant placebo 

group. Here we investigate whether a PGSA algorithm that was developed from the MCI 

population of ADNI 1*, can reliably simulate the distribution of composite neuropsychological 

outcomes from a larger, independently selected MCI subject sample.

METHODS—Data available from the National Alzheimer’s Coordinating Center (NACC) were 

used. We included 1523 patients with single or multiple domain amnestic mild cognitive 

impairment (aMCI) and at least two follow-ups after baseline. In order to strengthen the analysis 

and to verify whether there was a drift over time in the neuropsychological outcomes, the NACC 

subject sample was split into 3 subsamples of similar size. The previously described PGSA 
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algorithm for the trajectory of a composite neuropsychological test battery (NTB) score was 

adapted to the test battery used in NACC. Nine demographic, clinical, biological and 

neuropsychological candidate predictors were included in a mixed model; this model and its error 

terms were used to simulate trajectories of the adapted NTB.

RESULTS—The distributions of empirically observed and simulated data after 1, 2 and 3 years 

were very similar, with some over-estimation of decline in all 3 subgroups. The by far most 

important predictor of the NTB trajectories is the baseline NTB score. Other significant predictors 

are the MMSE baseline score and the interactions of time with ApoE4 and FAQ (functional 

abilities). These are essentially the same predictors as determined for the original NTB score.

CONCLUSION—An algorithm comprising a small number of baseline variables, notably 

cognitive performance at baseline, forecasts the group trajectory of cognitive decline in 

subsequent years with high accuracy. The current analysis of 3 independent subgroups of aMCI 

patients from the NACC database supports the validity of the PGSA longitudinal algorithm for a 

NTB. Use of the PGSA in long-term secondary AD prevention trials deserves consideration.
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Placebo Group Simulation Approach (PGSA); clinical AD trials; phase 3 clinical trials; MCI; 
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Introduction

We have recently proposed the PGSA (Placebo Group Simulation Approach) as a novel 

study design to partly substitute for long-term placebo-controlled secondary prevention trials 

in patients with mild cognitive impairment (MCI) (1). The PGSA uses study participants’ 

own demographic, baseline clinical, biological and neuropsychological data to model and 

forecast the distribution of the natural course of relevant cognitive outcomes of untreated 

patients included in clinical trials. These model-based outcomes are subsequently compared 

with the actual outcomes observed on the experimental treatment being tested, and may thus 

substitute for real observed outcomes of a concomitant placebo group. Differences -positive 

or negative - between the forecasted outcomes and the outcomes on experimental treatment 

may then be ascribed to the effect of the drug being tested. According to our proposal the 

PGSA should be considered in advanced stages of drug development, typically in Phase 3 

long-term studies with candidate disease-course altering compounds, assuming (1) that the 

expected biological and clinical effects of the experimental drug have been supported in 

preceding clinical trials on the target population (subjects with prodromal AD or MCI due to 

AD (2, 3)), and (2) that the experimental drug’s projected risk-benefit profile is suggestive 

of a successful completion of its clinical development.

Under such circumstances the PGSA can help to resolve two problems that are typically 

encountered in late stages of clinical development of disease-course altering drugs against 

AD and other progressive degenerative brain disorders: (1) the problem of subject sample 

representativeness (some patients and/or their carers will not consent to participate in a 

placebo-controlled long-term trial once they fully understand what placebo control means), 

and (2) the ethical dilemma on the side of investigators who are obliged to expose patients 
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with a high risk of contracting dementia to months and years of foreseeably useless placebo 

treatment - although they have a potentially effective therapy at their hands. For ethically 

problematic situations like this the ICH E10 guideline (4) considers using an external 

(historical) control if the course of the disease is predictable in a group of patients. Similar 

considerations apply if the new therapy is to be compared with a standard therapy that is 

known to have insufficient efficacy. Finally, if a standard therapy is available and a three-

armed trial is desirable, but not ethically feasible, a simulated placebo group based on the 

PGSA could replace a real one.

The PGSA has raised some interest in the AD community (5), although questions regarding 

the generalizability of our published PGSA algorithms are still open. It was also noted that 

trials using the PGSA and lacking a concomitant placebo group will not reliably answer 

questions of drug safety and tolerability, and that there is no randomized allocation of drug 

and placebo to study participants. Our first study (1) demonstrated the internal validity of the 

PGSA in the MCI population of the Alzheimer Disease Neuroimaging Initiative (ADNI 1 (6, 

7)). The present study deals with the external validity of the PGSA, i.e., with the question of 

whether a PGSA model, that was developed using ADNI 1 MCI data, can be reliably applied 

to simulate post-baseline neuropsychological performance data of another large, 

independently selected MCI subject sample, such that they coincide in distribution with the 

actually observed data.

Material and Methods

A database from the Uniform Data Set (UDS) collected at 33 AD centers in the USA was 

available from the National Alzheimer’s Coordinating Center (NACC; data collected under 

the cooperative agreement No. U01 AG016976; for details see Appendix). We used results 

from the data freeze of March 19, 2014, and, in a first step, excluded those participants who 

were also included in the ADNI 1 database. The remaining dataset contained 4602 subjects 

with a diagnosis at baseline of single or multiple domain amnestic mild cognitive 

impairment (aMCI). Patients younger than 55 or older than 90 years were excluded to 

conform to the ADNI 1 database. This reduced the dataset to 4466 patients. As we intended 

to apply a longitudinal model that includes the number of E4 alleles as a potential predictor, 

eventually 1523 patients, who had been genotyped for ApoE, and had at least one follow-up 

visit between 2 and 3.5 years after baseline were eligible for the analysis. Their demographic 

and other baseline characteristics are essentially the same as those of the whole NACC 

aMCI subject sample not restricted for ApoE4 availability (Table 1). Subjects underwent 

repeated evaluation of their cognitive function, about one year apart. Since our published 

PGSA models are based on ADNI 1 data not extending beyond 3 years (8), we did not 

consider NACC data from visits occurring more than 3.5 years after baseline.

Data available from the 1523 aMCI patients were collected between 2005 and 2014. In order 

to strengthen the analysis and to verify whether there was a drift over time in the 

neuropsychological outcomes, the subject sample was split into 3 subsamples of equal size 

(see Table 3 below): a group of “early” subjects (baseline data collected between July 29, 

2005 and August 10, 2006), “mid” (baseline data collected between August 11, 2006 and 
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December 2, 2007) and “late” participants (baseline data collected between December 3, 

2007 and September 30, 2011).

The ADAScog as a potential cognitive outcome is not available in the NACC database. For 

this reason the relevant outcome used in the current analyses is the trajectory of the 

composite score of a Neuropsychological Test Battery (NTB), computed from the z-scores 

of a set of standard tests of mental performance. Details on the UDS NTB and its factor 

structure are provided in Weintraub et al (9) and Hayden et al (10). In the absence of the 

ADAScog we preferred to use the NTB scores to the CDR-SB (Clinical Dementia Rating 

sum of boxes (11)) also contained in the NACC database, since the latter is based on a 

metric similar to an ordinal scale, which makes it less suitable for linear regression models 

as used in the current analysis. In addition, within MCI the numerical range of the CDR-SB 

becomes quite restricted as seen, e.g., in Cedarbaum et al. (11, Table 1), and that lack of 

variability reduces the ability to detect small changes which can be represented in scores like 

the NTB.

It had been our intention to include the same set of 9 neuropsychological tests for analysis of 

the NACC NTB that were integrated in the composite NTB score originating from the 

ADNI 1 database. However, one of the tests (delayed recall from the Auditory Verbal 

Learning test, AVLT) was not available in the NACC database, and for one other test 

(Logical Memory delayed recall from the Wechsler Memory Scale, WMS) several 

procedural details used in NACC differed significantly from those used in ADNI 1 (see 

below). Therefore, these two tests of the ADNI NTB could not be included in the current 

analysis (Textbox 1).

Textbox 1

Tests included in NTB-7

Digit span forward
Digit span backward
Category fluency animals
Category fluency vegetables
Trail making B
WAIS Digit symbol substitution test
Boston naming test
Not available in NACC database:
Delayed Recall from the AVLT
Not included due to procedural differences:
Logical Memory Test from the WMS

Z-scores of the remaining 7 neuropsychological variables were computed by subtracting the 

mean and dividing the obtained difference by the standard deviation of the ADNI 1 

participants who were cognitively normal at study entry (8). The z-scores for the Trail 

Making Test B (measured in seconds to complete) were inverted so that high values reflect 

high ability. The summary score NTB-7 was computed if at least 6 of the seven variables 

had valid data. Some individuals in NACC reported more than 20 years of education and, to 

conform to the ADNI 1 data, these values have been truncated to 20 years. Nine 

demographic, clinical, biological and neuropsychological variables were included as 

candidate predictors in the mixed model used for analysis (Textbox 2).
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Textbox 2

Candidate Predictor Variables Available at Baseline

Gender (1 = male, 2 = female)
Education (years)
Age (years)
Body Mass Index (BMI): normal (<25), high (25–30), obese (>30)
Hachinski modified score
Number of ApoE4 genes (available from 42% of subjects)
Total score of the Functional Assessment Questionnaire (FAQ)
MMSE
NTB-7 score

As a first step in the current validation of the longitudinal PGSA model, we had to adapt the 

original PGSA model for the NTB score with 9 tests to the NTB-7 score. Our published 

PGSA models were based on data from the ADNI database available in October 2009 (8). 

For the current analysis we downloaded the now completed ADNI database and extracted 

the data records of patients who were classified as MCI at baseline in the original ADNI 

study, now called ADNI 1. This data set comprises 397 patients at baseline, 380 at month 6, 

370 at month 12, 324 at month 18, 302 at month 24 and 251 at month 36. The procedure to 

develop the adapted mixed model was the same as described in (1):

• The sample consists of the patients in the ADNI 1 database with a diagnosis of 

MCI at baseline;

• The response is the composite score of the NTB, now computed as the mean of 

seven z-scores, abbreviated as NTB-7;

• The potential predictors are those listed in Textbox 2.

The starting model used all predictor variables, time and the square of time and interactions 

with time as fixed effects and allowed for random intercepts and slopes of patients. Random 

effects take into account the inter-correlations of NTB-7 scores within the same patient. 

Random intercepts model each patient’s deviation from the overall mean predicted from the 

model’s fixed effects (linear combination of all predictors and of time). Random slopes 

model each patient’s individual slope to describe change over time. Standard deviations of 

random intercepts and slopes are available from mixed model analysis.

Variable selection was based on the AIC criterion whereas, in the previous process of model 

development (1), variable selection was based on Wald tests. Backward stepping was first 

done for interactions with time, then for all main effects that were not involved in an 

interaction. Finally, each of the two-way interactions not involving time was tested for 

inclusion in the model. The final model was checked for normality and variance 

homogeneity of residuals. The model was then used to simulate NTB-7 scores on follow-up 

visits for the NACC data. The simulation comprises all aspects of randomness in the model 

parameters: For each patient, fixed effects were sampled from the multivariate distribution 

of the regression coefficients, and random effects were sampled from centered bivariate 

normal distribution; independent error terms were simulated for each visit. Five hundred 

simulation runs were performed to demonstrate the stability of the procedure. Boxplots 

comparing observed and simulated scores are broken down by rounded years of follow-up. 
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This simulation model reproduces the variance in the observed NTB-7 scores, whereas 

predicted values for the model have considerably smaller variance.

Analysis was performed using R (12) and, specifically, its package nlme for mixed effects 

model.

Results

Comparison of ADNI 1 and NACC data at baseline

Although the NACC sample showed wider variation in some baseline characteristics at the 

lower end, the ADNI 1 and the NACC MCI samples were remarkably similar with regard to 

average age, years of education, cerebrovascular risk, body mass index, cognitive status 

(MMSE) and functional abilities in daily life (FAQ) (Table 1). In contrast, the NACC 

population contains fewer male subjects and fewer individuals with one or two ApoE4 

alleles than the ADNI 1 sample (45.0% vs. 53.4%).

Despite some minor, statistically significant differences (p values not shown), the ADNI 1 

and the NACC MCI patient samples were quite similar at baseline with regard to their 

performance on most tests comprised in the NTB (Table 2). However, this did not hold true 

for the Logical Memory test of the WMS where NACC subjects performed almost 60% 

better than the ADNI 1 subjects on average (data not shown). The likely reason for this 

discrepancy is twofold: NACC subjects, but not ADNI 1 participants, were given a cue 

before being asked to recount the story of the Wechsler test, and the maximum performance 

of the ADNI 1 subjects was truncated by the investigators to 8 recalled items (S. Weintraub, 

Personal Communication). Given these differences this test was not included in the NTB-7 

(see Textbox 1).

All subsequent analyses were performed separately for 3 subgroups of NACC aMCI patients 

recruited at different times between 2005 and 2011 (early – mid –recent). Tables 3 and 4 

show demographic and neuropsychological data of these 3 subgroups; they are well 

comparable in all respects, with one exception: the percentage of carriers of one or two 

ApoE4 alleles is higher in the recent subjects than in the early and mid ones.

Adaptation of the ADNI 1 model

The mixed model for NTB-7 at follow-up visits contains time, the candidate predictor 

variables (Textbox 2) and interactions of time with these predictor as fixed effects. Random 

intercepts and random slopes were included because they account for inter-correlations and 

provided significant improvements of the model. The first step of fixed effects selection 

eliminated the interaction of time with categorized BMI, age, Hachinski modified score, 

MMSE, education and sex in this order. The interactions of time with the number of ApoE4 

alleles, FAQ and NTB-7 scores at baseline remained in the model. In the second step the 

effects of age, categorized BMI, education, and Hachinski were eliminated in this order. 

None of the pairwise interactions not involving time entered the model in the final step. The 

resulting model was checked for normality and homogeneity of variances. Since the 

variances decrease with increasing predicted values, a power-transformation for error 
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variance was included in the model. This cured the problem and yielded normal distribution 

of the residuals as well. The final model is shown in Table 5.

Comparison between the previously published longitudinal model for the NTB-9 (1) with 

the adapted model to simulate performance on the NTB-7 within the ADNI 1 MCI dataset 

shows high consistency: In both models the strongest single predictor of NTB outcomes, by 

far, are the scores of the respective NTB at baseline (coefficients are 0.908 in NTB-7 

compared to 0.975 in NTB-9). Another significant, but quantitatively much less important 

predictor in both models is the interaction between the number of ApoE4 alleles and time 

(−0.080 in NTB-7 versus −0.071 in NTB-9). The square of time only entered the new 

model, presumably because more information is now available on later visits in the 

completed ADNI 1 data. The MMSE score at baseline also emerged as a significant, 

although numerically weak predictor. The effects of time are not comparable, because time 

is involved in some interactions in both models. Other predictors in both models cannot be 

compared because they do not enter with the same variables in interactions. ADAScog was 

an important predictor in the previous model (1) but not in the present one, as the ADAScog 

is not available in the NACC database.

Simulation of the NACC outcome data

The coefficients of the fixed effects of the ADNI 1 model for the NTB-7 and their 

distribution were then used to simulate outcomes in the NACC aMCI dataset. All available 

follow-up visits between 2 and 3.5 years post baseline and with a complete set of predictor 

variables were extracted from the NACC sample (5078 of 5345 visits had a complete set of 

predictor variables for the final model). Predictions could not be computed for patients with 

missing values. Random effects and error terms are generated as centered normal variates 

with variance obtained from the mixed model estimates.

Comparing observed and simulated values 1, 2 and 3 years after baseline

The time between visits was quite variable in the NACC database: Some follow-up visits 

took place slightly earlier than one half year after baseline. These are grouped in the “1-year 

follow-up” by applying a cut-point of 0.45 years. The other cut-points to separate strata were 

1.5, 2.5 and 3.5 years.

Boxplots (Figures 1–3) show observed values at baseline and the decreasing numbers of 

observed values per follow-up for the “early”, “mid” and “late” subgroups separately. The 

observed values are compared with boxplots of all simulated values (500 times the number 

of available visits) and with boxplots of the 5%, 25%, 50%, 75% and 95% percentiles from 

500 simulation runs. Inspection of Figures 1 – 3 reveals that there is a continuous decline of 

cognitive performance - as indicated by a downward shift of the observed median z-values – 

in all 3 subgroups. This continuous decline is also seen in the simulated values – most 

clearly illustrated by the median z-values and their distributions. It will also be noted on 

Figures 1 – 3 that, overall, the correspondence between observed and simulated values is 

high, and that there is a small and slightly increasing overestimation of the cognitive decline 

in the simulated as compared to the observed values. This is also seen in Table 6, which 
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presents the mean z-values for the 3 strata at baseline and after 1, 2 and 3 years of follow-up. 

The mean overestimation increases from 0.015 (one year) to 0.117 (three years).

Discussion

Our original paper on the development of the PGSA models (1) presented two predictive 

algorithms: a univariate model to simulate ADAScog scores cross-sectionally, and a 

multivariable model to forecast the averaged z-scores of a NTB longitudinally, i.e., MCI 

subjects’ cognitive trajectory over several years. Both models used demographic, biological, 

neuropsychological and clinical data from the ADNI 1 MCI database as potential predictors. 

A first, internal validation was performed by comparison of observed and simulated 

ADAScog and NTB-9 scores within the ADNI MCI database (1). Since ADAScog data are 

not available in the NACC database, the present analysis focuses on the longitudinal PGSA 

model for the NTB and attempts a validation by applying the ADNI model for the NTB to a 

larger set of NACC aMCI data. The original PGSA longitudinal model for the NTB-9 of 

ADNI 1 needed to be adapted because two neuropsychological tests were either not 

available in the NACC database, or had to be omitted owing to relevant procedural 

differences between ADNI 1 and NACC. As a consequence, we adapted the longitudinal 

model, starting again from the meanwhile completed ADNI 1 database.

Although the omission of two proven tests of learning and memory in the new NTB-7 

represents a significant loss of information, the published PGSA model for the NTB-9 from 

ADNI 1 underwent little change when recalculated for the NTB-7 and applied to the updated 

ADNI 1 data. In both versions of the model the strongest predictor of the NTB trajectories, 

by far, are the baseline scores of the respective NTB: the baseline NTB-9 scores for the 

trajectory of the NTB-9, and the baseline NTB-7 scores for the trajectory of the NTB-7. A 

second significant predictor in both models is the interaction between the number of ApoE4 

alleles and time: The more E4 alleles are present, the faster is the decline in NTB-7 scores. 

The FAQ score, another significant predictor in the model for the NTB-9, also emerged as a 

significant predictor, interacting with time, of the NTB-7 scores.

The adapted model for the NTB-7 was then applied to a large aMCI dataset from NACC. In 

order to strengthen the analysis and to check whether there was a trend in time of study entry 

in the neuropsychological measures, the NACC aMCI sample was split into 3 subsamples of 

similar size, called “early”. “mid” and “late” depending on their time of recruitment. Visual 

comparison of Figures 1, 2 and 3 and inspection of Tables 4 and 6 provided two crucial 

observations: (1) There is no time trend in either the baseline values or the changes from 

baseline with regard to the mean NTB-7 z-scores; and (2) in all 3 subsets of data there was a 

high level of correspondence between the empirically observed and the model-based 

simulated values, supporting the validity of the longitudinal PGSA algorithm for the NTB-7.

However, close scrutiny of Figures 1–3 and Table 6 reveals a small, but potentially relevant 

difference between the observed and the modelled values: There is some overestimation of 

cognitive decline in the simulated as compared to the observed data which tends to increase 

over time. Before we discuss the significance of this observation, another phenomenon, also 
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seen in Figures 1–3, needs to be highlighted: the conspicuously slow decline of the NTB-7 

z-scores in both the observed and the simulated data over time.

Little cognitive decline in MCI subjects on placebo after 2 and 3 years was also seen in 

clinical drug trials with galantamine (13) and rivastigmine (14), and an unexpectedly low 

conversion rate to dementia even led to an extension of the rivastigmine trial from 3 to 4 

years (14). As for the slow average decline of the NTB-7 scores in the current study, one 

needs to consider some specifics of the NACC aMCI sample included in the analysis. These 

subjects’ median MMSE score at baseline was 27.0 (third quartile 29.0; see Table 1), 

suggesting that many of them were in an early stage of MCI or were possibly misclassified 

at baseline as having aMCI. A diagnosis of aMCI is even more doubtful for those subjects 

who had NTB-7 z-scores consistently around or clearly above zero at baseline or later, i.e., 

who were in the range typical of cognitively healthy subjects (Figures 1–3). As is known 

from other studies (e.g., (15–17)), subjects in very early stages of MCI are unlikely to 

deteriorate, or may revert to normal on follow-up, an observation that could partly explain 

the slow average decline noted in our analysis. Another factor that needs consideration is 

selective dropout of subjects with relatively poor performance at baseline: In longitudinal 

studies of cognitive performance, subjects with lower scores at baseline tend to deteriorate 

further and are then likely to drop out prematurely, and this selective dropout of poorer 

performers will result in seemingly better average performance on follow-up of those 

individuals who remain in the study. This mechanism was likely operating in the current 

study, too, as will be noted from the decreasing numbers of subjects available 1, 2 and 

particularly 3 years after baseline. In summary, the slow decline of cognitive performance in 

all 3 subsamples can probably be ascribed to two factors: a high percentage of subjects with 

little or no cognitive impairment at baseline included in the NACC aMCI database, and 

selective dropout primarily of those subjects who had relatively poor cognitive performance 

at baseline.

With regard to the small, but monotonically increasing overestimation of cognitive decline 

in the simulated data, one has to assume that selective dropout also played its part, and that 

NTB scores are missing not at random, i.e. missingness is dependent on the unobserved 

values and cannot be predicted from (previous) observed values. To be more concrete, we 

suppose that some subjects did not attend a subsequent visit when their cognition had 

deteriorated after the previous visit. The numbers on top of Figures 1 – 3 suggest that this 

may have happened more frequently in the “mid” and “late” subgroups between the 2nd and 

the 3rd year, which would then explain why lower values on late visits are underrepresented.

If these considerations apply, two consequences for the application of the longitudinal 

PGSA model for a NTB in future trials need to be drawn: One relates to the selection of 

aMCI patient samples with regard to their cognitive performance at baseline, the other to the 

proportion of subjects who are retained in a study. Thus, if many “very mild” aMCI patients 

(or subjects with no aMCI) are included in a patient sample, then a clinical trial with a 

potential disease-course altering drug and using the current longitudinal PGSA model risks 

to provide false positive results (because there will be less cognitive decline on the drug than 

forecasted by the model). Consequently, our observations support the notion that a diagnosis 

of aMCI (or prodromal AD) needs to be backed by thorough testing of cognitive function 
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(18) and, as far as acceptable to trial participants, by relevant biological markers (2, 19). The 

second consequence relates to patient retention and dropout in a clinical trial: The current 

PGSA algorithm for a composite NTB presupposes high retention rates (around 80 percent, 

see Figures). If, however, a significantly higher proportion of MCI patients with relatively 

poor cognitive performance at baseline are included in and then lost during a study, then 

NTB forecasts based on the current longitudinal PGSA algorithm will tend to over-estimate 

cognitive decline.

Returning to the main objective of the current study, i.e. an examination of the 

generalizability of a PGSA algorithm for MCI patients originating from the ADNI 1 

database, it is fair to say that the longitudinal PGSA model for the NTB was supported by 3 

independent subsets of aMCI data from NACC.

What inferences can be made from this work with regard to the proposed use of the PGSA 

models in clinical studies with candidate anti-AD drugs? Can one consider the PGSA as a 

valid alternative to traditional long-term RPCTs in advanced stages of clinical AD drug 

development? As noted earlier, development of the PGSA was undertaken with two major 

goals in mind: a scientific and an ethical one. The scientific goal is to improve the 

representativeness of patient samples recruited for clinical trials with anti-AD drugs, i.e., not 

to exclude those study candidates who will decline participation in a trial with prolonged 

placebo administration. In this regard a trial using the PGSA will be more similar than a 

RPCT to everyday clinical reality where drug treatment is usually prescribed without 

randomization to active medication and placebo, blinded assessments etc.. The ethical goal 

is to avoid or to minimize the extended use of placebo on aMCI or prodromal AD patients 

with their high risk of contracting dementia within a few years. As an additional benefit of 

the PGSA, one should also mention that recruitment of candidates into and retention of 

participants in PGSA-based trials will be easier than for RPCTs, an economical aspect of 

clinical studies that must not be neglected [20]. As noted by Grill & Karlawish [21] spouses 

of potential AD study participants are closely involved in their decision as to whether or not 

entering and continuing on a trial; according to these authors the “possibility of receiving 

placebo is a barrier to participation”.

We have previously stipulated that the PGSA makes better use of large and carefully 

collected MCI and AD databases such as those available from ADNI and NACC (22) than 

just viewing these subjects as “historical controls” in clinical trials. Thus, rather than using 

historical data for plain descriptive comparisons (see, e.g. 23), deriving predictive models 

for disease trajectories and endpoints from such data – models that can be used to simulate 

relevant outcomes of new MCI and AD patients samples adjusted for their baseline data - 

appears to be a more promising approach. Since the PGSA simulation model incorporates all 

sources of variation, it has been able to reproduce the distribution of observed outcomes.

What concrete applications can be foreseen for this proposed novel clinical study design? In 

our first publication on the PGSA (1) we suggested that the PGSA be preferably used in late 

stages of clinical drug development, and that PGSA-based studies may partly substitute for 

traditional long-term RPCTs. We maintain this proposition, but must add one more caveat: 

The results of the current analysis suggest that the longitudinal PGSA model (Table 5) tends 
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to overestimate the cognitive decline of untreated aMCI subjects, and thus carries some risk 

of providing wrongly positive results of treatment studies. This risk obviously increases 

when interventions with only marginal effects are tested, as seems to be the case with some 

current developments (24, 25). As a consequence, one either has to wait until more effective 

interventions become available for long-term trials, or one will have to resort to so-called 

enriched (26) or even very high-risk patient samples (27) where ethical concerns may render 

long-term placebo exposure of patients very difficult.

RPCTs of adequate size and duration are and will remain as the pivotal elements in some 

critical phases of clinical drug development programs, because only an RPCT can provide 

unbiased information on the efficacy, safety and tolerability of a new treatment. On the other 

hand, RPCTs have their serious limitations, too, and not all clinical studies in late stages of 

drug development need to be RPCTs. Trials using the PGSA can provide important 

supportive evidence of a new drug’s effectiveness from large numbers of persons with a 

diagnosis of aMCI or prodromal AD who – for whatever reasons – decline or have to be 

excluded from participation in RPCTs.

Conclusions

The NACC aMCI data set used in this validation study is about 3 times larger and less 

narrowly defined than the ADNI 1 MCI data set, and not all neuropsychological tests 

included in the NP-Batt9 for ADNI 1 are contained in the NTB-7 defined for NACC. 

Despite these differences, an algorithm comprising a small number of demographic, 

biological, neuropsychological and clinical variables routinely available at the outset of 

studies, notably cognitive performance at baseline, is able to forecast the average trajectory 

of cognitive decline in the subsequent three years in 3 independent aMCI subsamples from 

the NACC database. One notes some small, monotonously increasing over-estimation of 

cognitive decline, which might result in wrongly positive outcomes when applying the 

PGSA algorithm in studies with only marginally effective drugs. Practical measures how to 

deal with this risk in future intervention trials are described. It is suggested to use the PGSA 

as part of late stage anti-AD drug development programs where ethical problems may arise 

with prolonged placebo treatment.
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Abbreviations

AD Alzheimer Disease

ADC Alzheimer Disease Center

ADAScog Alzheimer Disease Assessment Scale cognitive

ADNI Alzheimer Disease Neuroimaging Initiative

AIC Akaike Information Criterion

aMCI amnestic mild cognitive impairment

ApoE4 Apolipoprotein Epsilon 4

AVLT Auditory Verbal Learning test

BL Baseline

BMI Body Mass Index

CDR-SB Clinical Dementia Rating sum of boxes

FAQ Functional Assessment Questionnaire

max Maximum

MCI Mild Cognitive Impairment

min Minimum

MMSE Mini-Mental Status Examination

NACC National Alzheimer’s Coordinating Center

NIA National Institute on Aging

NTB Neuro-Psychological Battery
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obs observed

PGSA Placebo Group Simulation Approach

R&D Research & Development

RPCT Randomized Placebo-Controlled Trial

SD Standard Deviation

sim simulated

UDS Uniform Data Set

WAIS, Wechsler Adult Intelligence Scalse

WMS Wechsler Memory Scale
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Appendix. Information on the NACC Database

The Alzheimer’s disease centers (ADC) who send data to NACC must send those data on all 

subjects who are enrolled in the ADC Clinical Core regardless of being a control or having a 

specific diagnosis, so these are best characterized as a clinical case series, relatively 

unselected except through self-selection to participate. Each of these NACC subjects is 

given a fully standardized examination and diagnosis very similar to the examination in 

ADNI; they are followed and re-examined annually with the same exam protocol.

Researchers using data usually apply their own selection (inclusion/exclusion) criteria to the 

overall available NACC database to obtain relatively homogeneous comparison or study 

groups. ADNI subjects were selected into ADNI only if they met ADNI inclusion/exclusion 

criteria. Thus, MCI subjects may be selected from the overall NACC database, as all those 

who at their last visit met criteria (e.g., Petersen) for MCI; or, for whom longitudinal test 

scores could be reported from first diagnosis of MCI until last available follow-up 

examination. While the MCI diagnostic criteria are essentially the same as ADNI, subjects 

are selected into ADNI like they would be into a clinical trial. In contrast, NACC receives 

all subjects enrolled at ADC and researchers select into their own comparison groups. 

NACC collects data on which drugs are used by patients at each annual visit but does not 

restrict any subject from participating based on medications.

A further description of the NACC and the data collected on each subject please see https://

www.alz.washington.edu. NACC and ADNI differ substantially in sheer size of the 

enrollment. Initially ADNI enrolled ~800 subjects, whereas NACC includes ~27,000, the 

numbers continue to grow and these subjects are re-examined annually until they 

discontinue or die. Because UDS enrollment began in 2005, and accrued prospectively, 

some subjects may have only an initial visit and others may have 6 or 7 follow-up visits. The 

29 ADC Centers comprise the full complement of National Institute on Aging, Alzheimer’s 

Disease Centers Program which contributed data to NACC. The number of Centers with 

data may vary slightly over the years because some Centers will remain funded and others 

will not be.
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Figure 1. 
Observed (obs) and simulated (sim) NTB-7 scores for the subsample of early recruited 

individuals with complete predictor information in NACC. Boxplots of observed values at 

baseline and after 1, 2, and 3 years (+/− 6 months), to be compared with boxplots of 

simulated scores (500 simulations). Each percentile boxplot summarizes 500 percentiles
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Figure 2. 
Observed (obs) and simulated (sim) NTB-7 scores for the subsample of mid-time recruited 

individuals with complete predictor information in NACC. Boxplots of observed values at 

baseline and after 1, 2, and 3 years (+/− 6 months), to be compared with boxplots of 

simulated scores (500 simulations). Each percentile boxplot summarizes 500 percentiles
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Figure 3. 
Observed (obs) and simulated (sim) NTB-7 scores for the subsample of recently recruited 

individuals with complete predictor information in NACC. Boxplots of observed values at 

baseline and after 1, 2, and 3 years (+/− 6 months), to be compared with boxplots of 

simulated scores (500 simulations). Each percentile boxplot summarizes 500 percentiles
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Table 1

Subject demographics

Variable All NACC (N=4466) NACC included (N=1523) ADNI-1 (N=397)

Sex male, n (%) 2276 (51.0 %) 797 (52.3) 256 (64.5 %)

Age, mean ± SD 74.4 ± 7.9 74.2 ± 7.9 74.2 ± 7.5

Education (years), mean ± SD 14.9 ± 3.5 15.5 ± 3.1 15.7 ± 3.0

BMI, mean ± SD 27.2 ± 5.1 27.1 ± 4.8 26.1 ± 4.0

Hachinski, median, min-max 1, 0–11 1, 0–10 1, 0–4

0 E4 allele, n (%) 1403 (54.2) 837 (55.0) 185 (46.6)

1 E4 allele, n (%) 967 (37.4 %) 549 (36.0) 165 (41.6 %)

2 E4 alleles, n (%) 219 (8.5 %) 137 (9.0) 47 (11.8 %)

MMSE, median, min-max 27, 2–30 27, 11–30 27, 23–30

FAQ, median, min-max 2, 0–30 2, 0–29 2, 0–21
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Table 2

Summary statistics of neuropsychological scores at baseline in “All NACC”, “NACC included” and ADNI 1 

samples

Cognitive test variable Means ± SD All NACC aMCI (N=4466) NACC included (N=1523) ADNI-1 (N=397)

Digit span forward 7.83 ± 2.10 8.06 ± 2.05 8.22 ± 2.02

Digit span backward 5.79 ± 2.09 6.00 ± 2.08 6.17 ± 2.02

Verbal fluency (animals) 15.9 ± 5.0 16.3 ± 5.0 15.9 ± 4.9

Verbal fluency (vegetables) 10.9 ± 3.9 11.2 ± 3.8 10.7 ± 3.5

Trail Making Test B 140 ± 77 129 ± 72 131 ± 73

Digit symbol substitution 36.9 ± 12.3 38.4 ± 11.7 36.8 ± 11.2

Boston Naming Test 24.5 ± 4.9 25.2 ± 4.6 25.5 ± 4.1

NTB-7 (z-scores) −0.90 ± 0.87 −0.75 ± 0.82 −0.76 ± 0.76

“All NACC” (N=4466) was obtained after excluding patients also found in the ADNI 1 database and patients with <55 years or > 90 years. 2589 of 
these subjects were ApoE genotyped. “NACC included” (N=1523) were ApoE genotyped and had at least one follow-up visit between 2 and 3.5 
years after baseline. The column to the right shows the respective characteristics of ADNI 1 MCI patients for comparison.
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Table 3

Demographics of 3 NACC subgroups (“early”, “mid” and “recent” subjects)

Variable Early (N=509) Mid (N=506) Recent (N=508)

Gender male, n (%) 266 (52.3) 247 (48.8) 284 (55.9)

Age, mean ± SD 74.9 ± 8.1 74.4 ± 7.4 73.2 ± 7.9

Education (years), mean ± SD 14.9 ± 3.14 15.4 ± 3.0 15.5 ± 3.2

BMI, mean ± SD 27.0 ± 4.64 27.2 ± 4.83 27.0 ± 4.82

Hachinski, median, min-max 1, 0–10 1, 0–10 1, 0–10

0 E4 allele, n (%) 298 (58.5) 285 (56.3) 254 (50.0)

1 E4 allele, n (%) 174 (34.2) 180 (35.6) 195 (38.4)

2 E4 alleles, n (%) 37 (7.3) 41 (8.1) 59 (11.6)

MMSE, median, min-max 28, 18–30 28, 15–30 28, 11–30

FAQ, median, min-max 2, 0–27 2, 0–29 2, 0–25
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Table 4

Summary statistics of neuropsychological scores at baseline in 3 NACC subgroups

Cognitive test variable Means ± SD Early (N=509) Mid (N=506) Recent (N=508)

Digit span forward 8.06 ± 2.07 8.01 ± 2.04 8.10 ±2.03

Digit span backward 6.11 ± 2.12 5.98 ± 2.02 5.91 ± 2.11

Verbal fluency (animals) 16.3 ± 4.85 16.1 ± 5.12 16.6 ± 5.13

Verbal fluency (vegetables) 11.4 ± 3.75 11.3 ± 3.82 11.0 ± 3.91

Trail Making Test B 131 ± 75 133 ± 72 124 ± 68

Digit symbol substitution 37.6 ± 11.7 38.5 ± 11.3 39.1 ± 12.0

Boston Naming Test 25.0 ± 4.9 25.1 ± 4.6 25.4 ± 4.3

NTB-7 (z-scores) −0.76 ± 0.84 −0.77 ± 0.81 −0.71 ± 0.82

The “NACC included” subject sample (N=1523) was split into 3 subsamples of similar size: a group of “early”, “mid” and “recent” subjects, 
depending on the time their baseline data were collected.
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Table 5

Fixed effects of the final mixed model for the NTB-7 estimated with the ADNI 1 subpopulation with an initial 

diagnosis of MCI

Fixed effects Coefficient Standard error t value P value

Intercept −0.772 0.2911 −2.65 0.0081

Time 0.168 0.0396 4.25 0.0000

Time2 −0.059 0.0093 −6.32 0.0000

Apolipoprotein E4 0.030 0.0268 1.13 0.2603

FAQ at baseline −0.006 0.0043 −1.32 0.1863

MMSE 0.024 0.0104 2.26 0.0242

NTB-7 at baseline 0.906 0.0271 33.42 0.0000

Time × Apolipoprotein E4 −0.080 0.0193 −4.12 0.0000

Time × FAQ −0.013 0.0031 −4.08 0.0000

Time × NTB-7 at baseline 0.077 0.0189 4.07 0.0001
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